

Performance Co-Pilot Grafana Plugin

Performance Co-Pilot (PCP) [https://pcp.io/] provides a framework and services to support system-level performance monitoring and management.
It presents a unifying abstraction for all of the performance data in a system, and many tools for interrogating, retrieving and processing that data.

Features

	analysis of historical PCP metrics using pmseries [https://www.mankier.com/1/pmseries] query language

	analysis of real-time PCP metrics using pmwebapi [https://www.mankier.com/3/pmwebapi] live services

	enhanced Berkeley Packet Filter (eBPF) tracing using bpftrace [https://www.mankier.com/8/bpftrace] scripts

	automatic rate conversation for counter metrics

	heatmap, table and flame graph [3] support

	auto completion of metric names [1,2], qualifier keys and values [1], and bpftrace probes, builtin variables and functions [3]

	display of semantics, units and help texts of metrics [2] and bpftrace builtins [3]

	legend templating support with $metric, $metric0, $instance, $some_label, $some_dashboard_variable

	container support [1,2]

	support for custom endpoint URL [1,2,3] and container [2] setting per query

	support for repeated panels

	sample dashboards for all data sources

[1] PCP Redis
[2] PCP Vector
[3] PCP bpftrace

Getting started

	Quickstart

	Installation

Troubleshooting

	Troubleshooting
	Common Problems

Quickstart

Installation

$ sudo dnf install grafana-pcp
$ sudo systemctl restart grafana-server
$ sudo systemctl start pmproxy

After Grafana and grafana-pcp is installed, you can enable the plugin:
Open the Grafana configuration, go to Plugins, select Performance Co-Pilot and click the Enable button.

Data Sources

Before using grafana-pcp, you need to configure the data sources.
Open the Grafana configuration, go to Data Sources and add the
PCP Redis,
PCP Vector and/or
PCP bpftrace datasources.

The only required configuration field for each data source is the URL to pmproxy [https://www.mankier.com/1/pmproxy].
In most cases the default setting of http://localhost:44322 can be used.
All other fields can be left to their default values.

Note

Make sure the URL text box actually contains a value (font color should be white) and not the placeholder value (light grey text).

Note

The Redis and bpftrace data sources need additional configuration on the collector host.
See PCP Redis and PCP bpftrace.

Dashboards

After installing grafana-pcp and configuring the data sources, you’re ready to open the pre-installed dashboards or create new ones.
Each data source comes with a few pre-installed dashboards, showing most of the respective functionality.
Further information on each data source and the functionality can be found in the Data Sources section.

Installation

Distribution Package

This is the recommended method of installing grafana-pcp.

Fedora

$ sudo dnf install grafana-pcp
$ sudo systemctl restart grafana-server

From GitHub

If there is no package available for your distribution, you can install a release from GitHub.

$ wget https://github.com/performancecopilot/grafana-pcp/archive/v2.0.2.tar.gz
$ sudo tar xfz v2.0.2.tar.gz -C /var/lib/grafana/plugins
$ sudo systemctl restart grafana-server

From Source

The yarn package manager [https://yarnpkg.com] is required for building grafana-pcp.

$ git clone https://github.com/performancecopilot/grafana-pcp.git
$ yarn install
$ yarn run build
$ sudo ln -s $(pwd) /var/lib/grafana/plugins
$ sudo systemctl restart grafana-server

For interactive development, run yarn run watch.

Change Log

2.0.2 (2020-02-25)

	vector, redis: remove autocompletion cache (PCP metrics can be added and removed dynamically)

2.0.1 (2020-02-17)

	build: fix production build (implement workaround for systemjs/systemjs#2117 [https://github.com/systemjs/systemjs/issues/2117], grafana/grafana#21785 [https://github.com/grafana/grafana/issues/21785])

2.0.0 (2020-02-17)

	vector, bpftrace: fix version checks on dashboard load (prevent multiple pmcd.version checks on dashboard load)

	vector, bpftrace: change datasource check box to red if URL is inaccessible

	redis: add tests

	flame graphs: support multidimensional eBPF maps (required to display e.g. the process name)

	dashboards: remove BCC metrics from Vector host overview (because the BCC PMDA isn’t installed by default)

	misc: update dependencies

1.0.7 (2020-01-29)

	redis: fix timespec (fixes empty graphs for large time ranges)

1.0.6 (2020-01-07)

	redis: support wildcards in metric names (e.g. disk.dev.*)

	redis: fix label support

	redis: fix legends

1.0.5 (2019-12-16)

	redis: set default sample interval to 60s (fixes empty graph borders)

	build: upgrade copy-webpack-plugin to mitigate XSS vulnerability in the serialize-javascript transitive dependency

	build: remove deprecated uglify-webpack-plugin

2.0.0-beta1 (2019-12-12)

	support Grafana 6.5+, drop support for Grafana < 6.5

1.0.4 (2019-12-11)

Enhancements

	flame graphs: clean flame graph stacks every 5s (reduces CPU load)

	general: implement PCP version checks

Bug Fixes

	build: remove weak dependency (doesn’t work with Node.js 12)

	build: upgrade terser-webpack-plugin to mitigate XSS vulnerability in the serialize-javascript transitive dependency

1.0.3 (2019-11-22)

	fix flame graph dependency (flamegraph.destroy error in javascript console)

1.0.2 (2019-11-12)

	handle counter wraps (overflows)

	convert time based counters to time utilization

1.0.1 (2019-10-24)

Flame Graphs

	aggregate stack counts by selected time range in the Grafana UI

	add option to hide idle stacks

Vector

	fix container dropdown in query editor

	remove container setting from datasource settings page

Redis

	fix value transformations (e.g. rate conversation of counters)

All

	request more datapoints from the datasource to fill the borders of the graph panel

1.0.0 (2019-10-11)

bpftrace

	support for Flame Graphs

	context-sensitive auto completion for bpftrace probes, builtin variables and functions incl. help texts

	parse output of bpftrace scripts (e.g. using printf()) as CSV and display it in the Grafana table panel

	sample dashboards (BPFtrace System Analysis, BPFtrace Flame Graphs)

Vector

	table output: show instance name in left column

	table output: support non-matching instance names (cells of metrics which don’t have the specific instance will be blank)

Vector & bpftrace

	if the metric/script gets changed in the query editor, immeditately stop polling the old metric/deregister the old script

	improve pmwebd compatibility

miscellaneous

	help texts for all datasources (visible with the [?] button in the query editor)

	renamed PCP Live to PCP Vector

	logos for all datasources

	improved error handling

0.0.7 (2019-08-16)

	Initial release of grafana-pcp

Features

	retrieval of Performance Co-Pilot metrics from pmseries (PCP Redis), pmproxy and pmwebd (PCP Live)

	automatic rate conversation of counter metrics

	auto completion of metric names 1,2, qualifier keys and values 2

	display of semantics, units and help texts of metrics 1

	legend templating support with $metric, $metric0, $instance, $some_label

	container support

	support for repeating panels

	support for custom endpoint URL and container setting per query, with templating support 1

	heatmap and table support 1

	sample dashboards for PCP Redis and PCP Live

1 PCP Live
2 PCP Redis

Known Bugs

	the bpftrace datasource is work-in-progress and will be ready with the next release (approx. 1-2 weeks)

Thanks to Jason Koch for the initial pcp-live datasource implementation and the host overview dashboard.

Overview

PCP Redis

This data source queries the fast, scalable time series capabilities provided by the pmseries [https://www.mankier.com/1/pmseries] functionality.
It is intended to query historical data across multiple hosts and supports filtering based on labels.

PCP Vector

The PCP Vector data source shows live, on-host metrics from the real-time pmwebapi [https://www.mankier.com/3/pmwebapi] interfaces.
It is intended for individual host, on-demand performance monitoring and includes container support.

PCP bpftrace

The PCP bpftrace data source supports system introspection using bpftrace [https://www.mankier.com/8/bpftrace] scripts.
It connects to the bpftrace PMDA and runs bpftrace scripts on the host.

PCP Redis

Introduction

This data source provides a native interface between Grafana [https://grafana.com/] and Performance Co-Pilot [https://pcp.io] (PCP), allowing PCP metric data to be presented in Grafana panels, such as graphs, tables, heatmaps, etc.
Under the hood, the data source makes REST API query requests to the PCP pmproxy [https://www.mankier.com/1/pmproxy] service, which can be running either locally or on a remote host.
The pmproxy daemon can be local or remote, and uses the Redis time-series database (local or remote) for persistent storage.

Setup Redis and PCP daemons

$ sudo dnf install redis
$ sudo systemctl start redis pmlogger pmproxy

Query Language

Syntax: [metric.name] '{metadata qualifiers}'

Examples:

kernel.all.load
kernel.all.load{hostname == "web01"}
network.interface.in.bytes{agent == "linux"}

Documentation of the pmseries query language can be found in the man page of pmseries [https://www.mankier.com/1/pmseries#Timeseries_Queries].

Query Formats

Time Series

Returns the data as time series.
If there are multiple series for a metric, all series will be shown as separate targets (i.e. a line in a line graph).
For metrics with instance domains, each instance is shown as a separate target.
If there are multiple queries defined, all values will be combined in the same graph.

Table

Transforms the data for the table panel.
Two or more queries are required, and it will transform every metric into a column, and every instance into a row.
The latest values of the current selected timeframe will be displayed.

Legend Format Templating

The following variables can be used in the legend format box:

	Variable

	Description

	Example

	$metric

	metric name

	disk.dev.read

	$metric0

	last part of metric name

	read

	$instance

	instance name

	sda

	$some_label

	label value

	anything

Query Functions

The following functions are available for dashboard variables of type Query:

	Function

	Description

	Example

	metrics([pattern])

	returns all metrics matching a glob pattern (if no pattern is defined, all metrics are returned)

	metrics(disk.*)

	label_values(metric, label)

	returns all label values for the specified label of the specified metric

	label_values(kernel.all.uptime, hostname)

PCP Vector

Query Formats

Time Series

Returns the data as time series.
For metrics with instance domains, each instance is shown as a separate target (i.e. line in a line graph).
If there are multiple queries defined, all values will be combined in the same graph.

Heatmap

Transforms the data for the heatmap panel.
Instance names have to be in the following format: <lower_bound>-<upper_bound>, for example 512-1023 (the bcc PMDA produces histograms in this format).

The following settings have to be set in the heatmap panel options:

	Setting

	Value

	Format

	Time Series Buckets

	Bucket bound

	Upper

Table

Transforms the data for the table panel.
Two or more queries are required, and it will transform every metric into a column, and every instance into a row.
The latest values of the current selected timeframe will be displayed.

Legend Format Templating

The following variables can be used in the legend format box:

	Variable

	Description

	Example

	$metric

	metric name

	disk.dev.read

	$metric0

	last part of metric name

	read

	$instance

	instance name

	sda

	$some_label

	label value

	anything

PCP bpftrace

bpftrace PMDA installation

$ sudo dnf install pcp-pmda-bpftrace
$ cd /var/lib/pcp/pmdas/bpftrace
$ sudo ./Install

Query Formats

Time Series

Shows bpftrace variables as time series.
For bpftrace maps, each key is shown as a separate target (i.e. line in a line graph), for example @counts[comm] = count().
If there are multiple variables (or scripts) defined, all values will be combined in the same graph.

Heatmap

Transforms bpftrace histograms into heatmaps.

The following settings have to be set in the heatmap panel options:

	Setting

	Value

	Format

	Time Series Buckets

	Bucket bound

	Upper

Table

Transforms CSV output of bpftrace scripts into a table.
The first line must be the column names.

Legend Format Templating

The following variables can be used in the legend format box:

	Variable

	Description

	$metric0

	bpftrace variable name

	$instance

	bpftrace map key

More Information

bpftrace PMDA README [https://github.com/performancecopilot/pcp/blob/master/src/pmdas/bpftrace/README.md]

Troubleshooting

Common Problems

When I try to add a datasource in Grafana I get:
“HTTP Error 502: Bad Gateway, please check the datasource and pmproxy settings. To use this data source, please configure the URL in the query editor.”

	check if pmproxy is running: systemctl status pmproxy

	make sure that pmproxy was built with timeseries (libuv) support enabled. You can find out if so in $PCP_LOG_DIR/pmproxy/pmproxy.log

Index

Moved

This document has moved to https://grafana-pcp.readthedocs.io/en/latest/datasources/redis.html

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Performance Co-Pilot Grafana Plugin

 		
 Troubleshooting

 		
 Common Problems

_static/up.png

